Polinomio irreducible — Saltar a navegación, búsqueda En Teoría de Anillos, un polinomio no constante (y por lo tanto no nulo) p con coeficientes en un dominio íntegro R (es decir, ) es irreducible si no puede factorizarse como producto de polinomios de manera que todos … Wikipedia Español
Polinomio primitivo — Saltar a navegación, búsqueda Un polinomio primitivo puede referirse a uno de los dos siguientes conceptos: Un polinomio sobre un dominio de factorización única (como el de los enteros) tal que el máximo común divisor de sus coeficientes es 1. El … Wikipedia Español
Polinomio separable — Saltar a navegación, búsqueda En matemática, un polinomio P(X) es separable sobre un cuerpo K si sus raíces en una clausura algebraica de K son distintas es decir P(X) tiene factores lineales distintos en una extensión de cuerpo suficientemente… … Wikipedia Español
Polinomio todo en uno — Saltar a navegación, búsqueda Un polinomio todo en uno (AOP, All in One Polynom) es un polinomio usado en campo finitos, especificalmente GF(2) (binario). El AOP es un 1 polinomio igualmente espaciado. Un AOP de grado m tiene todos los términos… … Wikipedia Español
Polinomio mínimo — Saltar a navegación, búsqueda En matemática, el polinomio mínimo de un elemento α es el polinomio mónico p de menor grado tal que p(α)=0. Las propiedades del polinomio mínimo dependen de la estructura algebraica a la cual pertenece α. Teoría de… … Wikipedia Español
Elemento algebraico — Saltar a navegación, búsqueda Un elemento algebraico sobre un cierto cuerpo matemático es un elmento de un conjunto que contiene a dicho cuerpo matemático y que constructible a partir de ciertas operaciones algebraicas relacionadas con los… … Wikipedia Español
Extensión de cuerpo — Saltar a navegación, búsqueda En Álgebra, las extensiones de cuerpo son el problema fundamental de la Teoría de Cuerpos. Un cuerpo es un conjunto en el que las operaciones suma y producto están definidas y funcionan bien . Cuando se construye una … Wikipedia Español
Cuerpo finito — Saltar a navegación, búsqueda En álgebra abstracta, un cuerpo finito, campo finito o campo de Galois (llamado así por Évariste Galois) es un cuerpo que contiene un número finito de elementos. Los cuerpos finitos son importantes en teoría de… … Wikipedia Español
Raíz de la unidad — Saltar a navegación, búsqueda En matemática, las raíces n ésimas de la unidad, o números de de Moivre, son todos los números complejos que resultan 1 cuando son elevados a una potencia dada n. Se puede demostrar que están localizados en el… … Wikipedia Español
Transformación de Tschirnhaus — En matemáticas , una transformación de Tschirnhaus, desarrollado por Ehrenfried Walther von Tschirnhaus en 1683, es un tipo de asignación de polinomios . Puede definirse convenientemente por medio de la teoría del campo , como la transformación… … Wikipedia Español